
1

Technical Overview

1

CH
A

P
TE

R

When we mean to build, we first survey the plot, then draw the model.
—William Shakespeare, Henry IV Part II Act 1 Scene 2

1. Introduction
Building and interacting with 3D graphics is a “hands on” experience. There are many
examples in this book to teach you how X3D works and to assist you in building your
own projects. However, before creating your own Extensible 3D (X3D) graphics scenes,
you should understand the background concepts explained here.

The book has an accompanying website at X3dGraphics.com. All examples plus
links to other reference material and software are available on the website.

This chapter presents the ideas needed to understand how an X3D scene graph
works. This information is used throughout the following chapters and is especially
helpful when creating your own X3D scenes. This book assumes that you are interested
in learning more about 3D graphics—prior knowledge is helpful, but not required. This
chapter is best for people who already have some knowledge of 3D graphics and are
ready to learn more of the technical background about how X3D works.

X3D uses a scene graph to model the many graphics nodes that make up a virtual
environment. The scene graph is a tree structure that is directed and acyclic, meaning

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 1

that there is a definite beginning for the graph, there are parent-child relationships for
each node, and there are no cycles (or loops) in the graph. Each node has a single par-
ent, except for the X3D root at the top (which has no further parent). The scene graph
collects all aspects of a 3D scene in a hierarchical fashion that properly organizes
geometry, appearance, animation, and event routing.

X3D is built on the Virtual Reality Modeling Language (VRML), which was first
approved as an international standard in 1997. X3D adds Extensible Markup Language
(XML) capabilities to integrate with other World Wide Web technologies.

X3D design features include validity checking of content, componentized
browsers for faster downloads, flexible addition of new hardware extensions, a light-
weight Core Profile, and better script integration compared to VRML. Numerous
(more than 2000) example scenes demonstrate most 3D and animation aspects of these
scene-graph specifications, and demonstrate syntax checking during autotranslation to
VRML encodings. The web3d.org members-only website provide a challenging con-
formance and performance suite for demonstrating exemplar high-end content. Both
XML-based and VRML-based file formats are valid ways to encode the information
in an X3D scene. The relative benefits of each are explained and compared in this
chapter.

If you are interested in learning how to author X3D scenes right away, you can skim
(or even skip) this chapter and read Chapter 2, Geometry Nodes, Part I: Primitives. The
background information contained here is not immediately necessary, because the author-
ing tools take care of headers and structure automatically. The X3D-Edit authoring tool
is available to help you build scenes, available free on the book’s website.

2. Concepts
This chapter begins with historical background on the development of X3D, presents a
brief look at the X3D specifications, and then provides a detailed overview of how the
X3D scene graph works. Relevant X3D concepts include scene-graph structure, file
encoding, field and node types, and extensibility via profiles and components.

2.1. Historical background: VRML, ISO, and the Web3D Consortium
X3D is a scene-graph architecture and file-format encoding that improves on the
VRML international standard (formally listed as ISO/IEC 14772-1:1997 but fre-
quently called VRML 2 or VRML97). X3D uses XML to express the geometry and
behavior capabilities of VRML. VRML is well known as a highly expressive 3D inter-
change format that is supported by many tools and codebases. In addition to express-
ing diverse geometry renderings and animation behaviors, X3D allows program
scripting (in ECMAScript or Java) and node prototyping, which together provide
excellent support for scene-graph extensions and new language functionality defined
by authors.

2 C H A P T E R 1 Technical Overview

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 2

The VRML effort began in 1994 when Mark Pesce and Tony Parisi called for the
creation of a markup language for 3D graphics on the Web. Several candidates were
considered through an open competition, and eventually OpenInventor by Rikk Carey
and Paul Strauss at Silicon Graphics Inc. (SGI) was selected as the best basis for creat-
ing such a language. Originally called the Virtual Reality Markup Language, VRML 1.0
was quickly produced using an informal, open, consensus-based working-group effort.
Several years later, a somewhat restructured (and much improved) VRML 2.0 success-
fully passed the rigorous scrutiny necessary for approval as International Standard
14772-1:1997, becoming known as VRML97.

To protect VRML as an open 3D-graphics standard, and further encourage the con-
tinuation of open development, more process and support was needed than a simple
mailing list and web server. A broad cross-section of business companies, academic insti-
tutions, government agencies, and individual professionals joined together to form the
nonprofit Web3D Consortium. This combination of friendly cooperation, hard work,
formal organizational support, and an enthusiastic community have remained the
hallmark of VRML and X3D evolution throughout many development cycles.

Despite intermittent industry engagement over the past decade, VRML has persisted
and remains the most widely supported nonproprietary 3D-scene format in the world.
VRML has now entered its third generation as X3D. Many lessons have been learned
and many successful new capabilities have been integrated into this evolving interna-
tional standard. X3D 3.0 was formally approved by the International Standards
Organization (ISO) as ISO/IEC 19775 in 2004. Since that milestone, annual specifica-
tion updates continue to track the cutting edge of industry capabilities. The Web3D
Consortium (www.web3d.org) actively supports many working groups and an active
community of interested users. Authors, developers, professionals, and enthusiasts con-
tinue to add to the long list of capabilities in X3D. Web3D Consortium membership is
open to both organizations and individuals.

2.2. X3D browsers
X3D browsers are software applications that can parse (read) X3D scenes and then ren-
der (draw) them, not only showing 3D objects from varying viewpoints but also
enabling object animation and user interaction. Sometimes referred to as players or
viewers, X3D browsers are often implemented as plugins that work as an integrated part
of a regular hypertext markup language (HTML) web browser (such as Mozilla Firefox
or Internet Explorer). X3D browsers can also be delivered as standalone or embedded
applications that present X3D scenes for user viewing.

Figure 1.1 shows a representative example of the software architecture typically
used in a browser. The descriptions in this paragraph follow the blocks in a counter-
clockwise order (starting at the upper left). X3D scenes are usually files that are read (or
written) by the browser. Parsers are used to read the various file-format encodings avail-
able. Nodes are then created and sent to a scene-graph manager, which keeps track of
defined geometry, appearance, locations, and orientations. The scene-graph manager
repeatedly traverses the scene-graph tree of X3D Nodes to draw output image frames at

X3D: Extensible 3D Graphics for Web Authors 3

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 3

a rapid rate. This process rapidly redraws precisely calculated perspective-based images
as the user’s point of view and objects of interest change. The event graph also keeps
track of all animation nodes, which are computationally driven to generate and pass
value-change events into the scene graph. Events received by the scene graph can change
any aspect of the rendered image. Further extending the animation nodes are scripts,
which can send or receive events and also generate (or remove) geometry in the scene.
Scripts encapsulate programming code from other languages, usually either ECMAScript
(formerly known as JavaScript) or Java. The Scene Authoring Interface (SAI) defines
how these application programming interfaces (APIs) work, allowing authors to create
scripting code that can work across different operating systems and different browser
software. Finally (ending at the upper-right corner of the diagram), HTML web pages
and external applications can also be used to embed X3D plugin browsers, which appear
to users as live, interactive 3D images on the page.

The internals of different browsers vary. Nevertheless, the goal for all is to provide
a consistent user experience for each X3D scene. That is one of the greatest strengths of
X3D: defining how a software browser ought to draw 3D images and interact with

4 C H A P T E R 1 Technical Overview

X3D scenes,
X3D streams

Event passing within
HTML web page

or external application

Scene Graph Renderable Nodes Event Graph Animation Nodes

Scene Authoring Interface (SAI)

Application programmer interfaces

Scripting engines

X3D XML
encoding

Classic VRML
encoding

Binary
encoding

X3D
nodes, node types

Prototype and
External Prototype

 Scene graph manager

New node and prototype construction

Parsers

X3D Browser

EcmaScript
Java

others

Figure 1.1. Example software architecture for an X3D browser.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 4

users, rather than trying to tell browser-building programmers exactly how to write their
high-performance software. This balance works well because authors can simply focus
on building good X3D models (rather than difficult, nonportable software programs)
and have confidence that the X3D scenes will work wherever they are displayed.

This approach is sometimes summarized by the slogan “content is king,” because
achieving interoperability and consistency among X3D scenes is considered more impor-
tant than the idiosyncracies of any single programming approach. The overall approach
also works well because the software programmers who build X3D browsers (an
immensely capable but notoriously opinionated group!) can compete on implementation
performance and conformance, independently choosing which programming approaches
work best, all while agreeing on consistently achieving X3D scene interoperability. Best
of all, legacy X3D scene content doesn’t “rust” or get bugs. Instead, good content can
remain valid and useful indefinitely, without modifications, even as browsers continue
to change and improve year after year.

An example scene and corresponding browser snapshot image are provided in the
last section of this chapter.

2.3. X3D specifications
The X3D specifications are a highly detailed set of technical documents that define the
geometry and behavior capabilities of Classic VRML using the Web-compatible tagsets
of XML. Scene graphs, nodes, and fields (in X3D terminology) correspond to docu-
ments, elements, and attributes (in XML terminology). As part of the Web3D
Consortium, the X3D working Group has designed and implemented the next-generation
X3D graphics specification (www.web3D.org/x3d). Lots of feedback and modifications
by an active user community improved these results throughout the review process.

It is particularly important to note that XML benefits are numerous: XML has
customized metalanguages for structuring data, is easily read by both humans and
computer systems, has validatable data constraints, and so on. XML is license free, plat-
form independent and well supported (Bos 2001). Together these qualities ensure that
the VRML ISO standard has been extended to functionally match the emerging family
of next-generation XML-based Web languages. X3D is now part of that Web-compatible
information infrastructure.

The original VRML specification was written to stand alone as a single document.
While this made for a simpler reference document, the result was not easily modifiable.
Growing from VRML97 to X3D 3.0 took many years of work. Because the X in X3D
stands for Extensible, there are now multiple specification documents that govern the
coherent evolution and diverse capabilities of X3D. Each can be developed and
extended independently, allowing annual updates that document the stable growth of
X3D.

It is interesting that the primary functionality of nodes and fields in X3D graphics are
specified in a technology-neutral way that is independent of any particular file encoding
or programming-language binding. The X3D Abstract Specification remains the

X3D: Extensible 3D Graphics for Web Authors 5

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 5

governing reference on how the X3D scene graph works. In this way, each file-format
encoding and language binding is expected to remain interoperable, compatible, and
functionally equivalent with the rest.

Each of these specification documents has been developed through an open, collabo-
rative process by volunteer working-group members in the nonprofit Web3D Consortium.
Many of these participants are industry experts who are supported by their companies.
Each year, proposed new functionality is implemented (at least twice), evaluated, and spec-
ified in formal draft specifications that go to the ISO for final review and ratification.
Because all X3D development, implementation, and evaluation is done within the Web3D
Consortium process, the overall process is relatively rapid for production of an
International Standard. The annual update cycle keeps this work in step with commercial-
product development and the always-growing capabilities of the 3D-graphics industry.

The various file encodings and language bindings consistently implement the com-
mon-core functionality of the X3D Abstract Specification. The Humanoid Animation
(H-Anim) specification is also supported. Figure 1.2 (the honeycom diagram) illustrates
how these specifications relate to each other.

The World Wide Web Consortium (W3C) Document Object Model (DOM) is
another language-neutral API designed for processing XML documents. It uses string-based

6 C H A P T E R 1 Technical Overview

.wrl, .wrz
VRML 97

Specification

ISO 14772-2

X3D File
Encodings

Programming
Language
Bindings

.x3d
XML Encoding
DTD, Schema
ISO 19776-1

XML
Encryption,

Authentication

Recommendations
W3C

.x3dv
Classic VRML

Encoding

ISO 19776-2

DOM
Document

Object Model

Recommendations
W3C

Scene Access
Interface (SAI)
scripting API

for Java

ISO 19777-2Scene Access
Interface (SAI)
scripting API

for EcmaScript

ISO 19777-1

.x3db
Compressed

Binary
Encodings

ISO 19776-3

X3D
Abstract, API
Specifications
ISO 19775-1,2

H-Anim
ISO 19774

Figure 1.2. The family of X3D specifications includes multiple file encodings and programming-language bindings, all
mapping to the same common functionality defined by the abstract specifications.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 6

X3D: Extensible 3D Graphics for Web Authors 7

accessor methods to get and set both element and attribute values. It can also be used to
build and modify X3D scenes that are written in the XML encoding. However, because
string-based DOM performance is usually too slow for the demands of real-time, inter-
active 3D graphics, DOM is rarely used directly in combination with a rendering X3D
browser. Nevertheless, DOM and other XML-related APIs can be quite useful for creating,
reading, or modifying X3D scenes separately from an X3D browser.

Two more W3C Recommendations apply: XML Signature for digital signatures and
XML Encryption. Together they are part of the XML Security area, and are compatible
with the .X3db Binary Encoding. This rich set of functionality allows authors to reduce
file size, optionally reduce geometric complexity (using either lossless or lossy
algorithms), digitally sign content to prove ownership, and encrypt content to protect
the source document.

Table 1.1 lists the pertinent specifications currently used in X3D and this book.
They are available online (www.web3d.org/x3d/specifications), with X3D-Edit, and on
the website accompanying this book. Installing the specifications on your working com-
puter and referring to them in combination with this book is a good way to become
familiar with the many details and options available in X3D.

Someday additional programming language bindings (perhaps for C++ and/or C#,
perl, and so on) might be added to the X3D specification. Although this kind of work
requires significant expertise, producing such an addition to the 19777 specification
series of API language bindings is a relatively straightforward matter. The well-defined
nature of X3D extensibility requires that all functionality align with already-standardized
X3D Abstract Specification. The precise objects and methods of any new API are likely
to resemble the similarly structured ECMAScript and Java language bindings. This
means that the most difficult work (i.e., defining compatible 3D functionality) is already
done, and any new language bindings merely have to define how they will implement
well-specified X3D capabilities. Last but not least, any such programming-language
interface must be independently implemented in at least two browsers before specification
approval.

All of the X3D specifications are freely available in electronic form, updated online.
Paper hardcopies or CDs can also be purchased directly from ISO. Serious X3D authors
are advised to keep a copy of the specifications easily available to refer to when tricky
questions arise. Copies of the X3D specifications, X3D tooltips, and other help files are
linked on X3dGraphics.com for your convenience. Although this kind of reading can be
difficult at first, the effort is worthwhile. Asking questions online about specification
details is a good way to learn more. Perhaps someday you will even find yourself pro-
posing an improvement to the X3D specifications on a Web3D mailing list. A large,
friendly community of interest posing questions and solutions has made it possible for
X3D to grow steadily since 1994.

2.4. Scene graph
Knowing some of the theory behind X3D is helpful. Scene graphs are a model-centric
approach. Model geometry, size, appearance, materials, relative locations, and internal

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 7

relationships are expressed as a directed acyclic graph (DAG). Data functionality is
collected in nodes, which contain field parameters. Field parameters may contain simple-
datatype values or further nodes. This approach allows program-independent, logical
structuring of model data. The inclusion of viewpoint definitions makes it easy to add
different user viewing perspectives.

It is interesting that scene graphs have been used by many 3D-graphic APIs,
including OpenInventor and Java3D. Scene-graph concepts were derived from the
notion of display lists, used in early 3D graphics. Scene-graph design is well suited for
equivalent model representations as source code or file content. Thus, learning X3D

8 C H A P T E R 1 Technical Overview

Specification Number Document Title Description

ISO/IEC 14772 The Virtual Reality Modeling VRML 2.0 after formal specification
Language: Part 1 with review. Added EAI API.
Amendment 1 and Part 2,Known as Superceded by X3D, which
VRML97 replaced EAI with SAI.

ISO/IEC 19774 Humanoid Animation (H-Anim) Abstract definitions for H-Anim
functionality, includes VRML
encoding.

ISO/IEC 19775-1 & ISO/IEC Extensible 3D (X3D)—Part 1: X3D Abstract Specification. Defines
19775-1/Amendment 1 Architecture and base scene-graph functionality

components including nodes, components
and profiles.

ISO/IEC 19775-2 Extensible 3D (X3D)—Part 2: Scene X3D Abstract Specification of
access interface (SAI) principles and semantics for

SAI API.

ISO/IEC 19776-2 & ISO/IEC Extensible 3D (X3D) encodings— XML encoding syntax for .x3d files.
19776-1/Amendment 1 Part 1: Extensible Markup

Language (XML) encoding

ISO/IEC 19776-2 & ISO/IEC Extensible 3D (X3D) encodings— VRML encoding syntax for .x3dv
19776-2/Amendment 1 Part 2: Classic VRML encoding files.

ISO/IEC 19776-3 Extensible 3D (X3D) encodings— Binary encoding syntax for .x3db
Part 3: Binary encoding files.

ISO/IEC 19777-1 Extensible 3D (X3D) language SAI functionality and syntax for
bindings—Part 1: ECMAScript script code written in ECMAScript.

ISO/IEC 19777-2 Extensible 3D (X3D) language SAI functionality and syntax for
bindings—Part 2: Java script code written in Java.

API, application programming interface; EAI, external authoring interface; H-Anim, humanoid animation; SAI, scene access
interface; VRML, virtual reality modeling language; X3D, Extensible 3D; XML, Extensible markup language.

Table 1.1. X3D Specifications Summary Table

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 8

X3D: Extensible 3D Graphics for Web Authors 9

can be valuable, because it provides an introductory path for many approaches to 3D
graphics. Web authors and students do not need a programming background to get
started.

Several 3D browsers render and animate scene graphs in a straightforward way.
Starting at the root of the tree, the scene graph is traversed in a depth-first manner.
Traversal of transformation nodes modifies the location and orientation of the current
coordinate system (i.e., the current relative reference frame). Traversing appearance or
material properties modifies the rendering parameters for subsequent geometry.
Traversing geometry nodes renders polygons. Traversal of USE nodes (instance refer-
ences) can efficiently redraw previously created structure without compromising the
acyclic nature of the DAG tree.

Behaviors are an essential aspect of scene graphs. A behavior is defined as changing
the value of some field within some node of the scene graph. This usually means gener-
ating numbers to animate the size, shape, position, or orientation of an object. Behaviors
are powerful and general, because any parameter in the scene graph is usually manipu-
latable in one way or another. Data producers (such as sensor nodes monitoring the user,
linear-interpolation functions, or scripts) are connected to other 3D nodes in the scene
graph via ROUTEs. Thus a ROUTE passes events, which are time-stamped behavior
values, produced by the field of one node and sent to the field of another node. This
technique is presented in Chapter 7, Event Animation and Interpolation.

Behavior ROUTEs make up an event-routing graph that connects nodes and fields within
the encapsulating scene graph. One way to visualize these relationships is print out a hard-
copy of a pretty-print HTML version of a scene (landscape printing is usually best), and sim-
ply draw ROUTE lines from each target node to each destination node. Then annotate the
beginning and end of each line with the name and data type of the source and target fields.
The result is a copy of the event graph superimposed on the scene graph. This is an excellent
learning technique for understanding behavior relationships within an X3D scene.

Taken together, the rules governing this animation-behavior framework are com-
monly referred to as the X3D event model. More rules regarding parallelism are pro-
vided in the X3D specification for browser builders. Nevertheless these special cases are
not often a worry for X3D authors.

The overall design of X3D to augment the geometry of a scene graph with interpo-
lators, animations, and behaviors is an excellent architectural example of a declarative
simulation. The defining scene declares the various implicit interrelationships between
objects, and the actual simulation sequence of events is determined simply by user-
provided interactions and by author-defined timing of event production. Resultant
behavior typically remains unaffected by differences in processor speed on different
viewing computers, because animated events are synchronized with wall-clock time
rather than processor-clock time. Addition of scripting nodes can further integrate
explicit step-by-step imperative algorithms, compatibly operating imperatively (for short
time intervals) within the declarative scene-graph framework.

Declarative simulations are powerful. The author can focus on the constraints and
relationships between different parts of the scene graph, and desired behaviors emerge

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 9

from those connections. This is much different (and usually much simpler) than writing
an imperative program using a graphics programming language, in which every detail
(draw this triangle, draw that triangle) must be directed and handled exhaustively.
Experienced 3D-graphics programmers are often pleasantly surprised at the power and
capability of X3D, packed into a much simpler modeling methodology.

2.5. File structure
The X3D scene graph is usually presented in a file, using either the .x3d XML encoding
or the .x3dv Classic VRML encoding. The same-graph structure is well defined and
remains consistent in each encoding. Each encoding imposes its own requirements on the
syntax and layout of the common representation of information.

The top-level structure of X3D files is:

• File header

• X3D header statement

• Profile statement

• Component statement (optional, multiple)

• META statement (optional, multiple)

• X3D root node (implicit in Classic VRML encoding)

• X3D scene graph child nodes (multiple)

Each structural file element is described in more detail in the following sections.

2.5.1. File header

The X3D file header contains the primary setup information about the X3D scene.
There are no renderable nodes in this portion of the file. The header contains required
and optional information about the scene capabilities. The file header comprises the fol-
lowing statements: XML and X3D headers, profile, component, and meta.

Table 1.2 shows the proper definitions for a file that includes the Immersive profile,
multiple components, and example meta tags. The .x3d XML encoding is similar to
XHTML in that most of the header information is contained in a <head> tag. Complete
details are provided in example scene, HeaderProfileComponentMetaExample.x3d. The
following sections contain information on each part of the file header.

2.5.2. X3D header statement

The X3D header statement identifies the file as an X3D file. The specific format and
position is encoding dependent. The information in the header statement is the X3D
identifier, X3D version number, and the text encoding. X3D uses the (universal text for-
mat UTF-8) character encoding, which supports essentially all electronic alphabets for
different human languages. The allowed versions of X3D include 3.0 and 3.1.

10 C H A P T E R 1 Technical Overview

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 10

X3D: Extensible 3D Graphics for Web Authors 11

The XML encoding matches general XML header requirements, starting with the
<?xml?> declaration. Thus all .x3d scenes must first be well-formed XML: properly
formed open, close, and singleton tags, single- or double-quoted attributes, and so on.
There are two available XML-based mechanisms to further validate the correctness of
the .x3d file. Each is optional but recommended. A Document Type Definition (DTD as
indicated by a DOCTYPE statement) and an XML Schema reference. Schema informa-
tion appears in the document root <X3D> tag. Version number is a required part of the
X3D root declaration in all encodings.

<?xml version=''1.0'' encoding=''UTF-8''?>
<!DOCTYPE X3D PUBLIC ''ISO//Web3D//DTD X3D 3.1//EN''

''http://www.web3d.org/specifications/x3d-3.1.dtd''>
<X3D version=''3.1'' profile=''Immersive''
xmlns:xsd=''http://www.w3.org/2001/XMLSchema-instance''
xsd:noNamespaceSchemaLocation=
''http://www.web3d.org/specifications/x3d-3.1.xsd''>

<head>
<component name='DIS' level='1'/>
<component name='Geospatial' level='1'/>
<component name='H-Anim' level='1'/>
<component name='NURBS' level='4'/>
<meta name='filename'
content='HeaderProfileComponentMetaExample.x3d'/>

</head>
<Scene>

<!——Scene graph nodes are added here——>
</Scene>

</X3D>

#X3D V3.1 utf8
PROFILE Immersive
No HEAD statement is provided in ClassicVRML Encoding
COMPONENT DIS:1
COMPONENT Geospatial:1
COMPONENT H-Anim:1
COMPONENT NURBS:4
META ''filename'' ''HeaderProfileComponentMetaExample.x3d''
Scene graph nodes are added here

Table 1.2. Comparison of XML (.x3d) and ClassicVRML (.x3dv) header syntax

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 11

<?xml version=''1.0'' encoding=''UTF-8''?>
<!DOCTYPE X3D PUBLIC ''ISO//Web3D//DTD X3D 3.1//EN''

''http://www.web3d.org/specifications/x3d-3.1.dtd''>
<X3D profile=''Immersive'' version=''3.1''

xmlns:xsd=''http://www.w3.org/2001/XMLSchema-instance''
xsd:noNamespaceSchemaLocation=
''http://www.web3d.org/ specifications/x3d-3.1.xsd''>

The character-encoding is identified in the <?xml?> declaration and Universal Text
Format (UTF-8) is the most commonly used. The X3D identifier and version number are
also included in the optional (but recommended) DOCTYPE and Schema references.
Using a later version number in the DOCTYPE or Schema reference than the X3D root
node requires is allowed, because each new version of X3D maintains backwards com-
patibilty.

For the ClassicVRML encoding, the header is as follows.

#X3D V3.1 utf8

This must be the first statement in a ClassicVRML encoded X3D file. Unlike the
XML encoding, no external validation references are provided, because browsers are
assumed to be capable of properly parsing the VRML-based scene syntax.

Like comment statements, header information is generally not available for run-time
access after an X3D scene has been loaded into memory and begun running. Persistent
information (such as metadata) can be stored within the scene using the strictly
datatyped, persistent metadata nodes.

This book is based on ISO/IEC 19775 Parts 1 and 2, ISO/IEC 19775 Amendment 1,
ISO/IEC 19776 Parts 1 and 2, ISO/IEC 19776 Parts 1 and 2 Amendment 1, and
ISO/IEC 19777 Parts 1 and 2. These are known collectively as X3D 3.0 and X3D 3.1.
The version number of X3D changes with each amendment release of the specification.
The X3D 3.0 specification was approved by ISO in 2005. X3D 3.1 was approved in
2006, correcting some minor problems in X3D 3.0 and adding significant new
functionality.

As additional amendments are developed and approved, the X3D version num-
ber is incremented accordingly. The Web3D Consortium and ISO continue working
to produce extension updates, completing an amendment about every 18 months.
As this book goes to press, amendment 1 (X3D version 3.1) is approved, amendment
2 (X3D version 3.2) is undergoing formal review, and proposed amendment 3
extensions are undergoing collaborative Web3D working-group implementation and
evaluation.

2.5.3. Profile statements

There are a number of profiles defined for X3D. Each profile is targeted for a common
market or commonly used set of functionality. Profiles exist in order to enable browser
builders to achieve intermediate levels of support for X3D, rather than trying to imple-
ment a large specification at once. Profiles also assist authors, because they can target

12 C H A P T E R 1 Technical Overview

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 12

X3D: Extensible 3D Graphics for Web Authors 13

their created scenes to use the functional vocabulary supported in a given profile. This
means that content is well defined and more likely to be widely portable. Profiles help
conversion programs translate between different file formats. Finally, profiles help
extend the reach of X3D to smaller, lightweight devices such personal digital assistants
and cell phones.

The minimalist X3D profile is called Core. It includes only the basic X3D defini-
tions (such as ROUTEs) and the metadata nodes, but does not include any geometry,
appearance, or animation capabilities. The Core profile is a base level so that an author
can specify the special functionality required for a virtual environment using component
statements. Several intermediate profiles are also provided: Interchange, Interactive,
CADInterchange and Immersive. The CADInterchange profile is designed to support
web export and interoperability for computer-aided design (CAD) formats using X3D.
An MPEG-4Interactive profile (similar to the Interactive profile) has been approved for
use with Motion Picture Experts Group (MPEG-4) audio, video, and multimedia
content.

The Full profile includes everything defined in all related X3D specifications. It pro-
vides a means for referring to every X3D component without naming any of them.

Typically each profile is a superset of the preceding profile, shown in Figure 1.3
(known as the “onion-layers” diagram). Details about each profile follow.

Core: The Core profile is not designed for regular use. Rather, it provides the absolute
minimal definitions required by an X3D browser (essentially just the metadata nodes).
Advanced authors can build minimally defined scenes by explicitly specifying the
component and levels required in the scene.

Full

Immersive

Interactive

Interchange

Core

CAD

Figure 1.3. Multiple X3D profiles providing increasing sophistication allow more efficient browser support for
lightweight content.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 13

14 C H A P T E R 1 Technical Overview

Interchange: This is the base profile for exchanging geometric models between various
3D applications. It is designed to be easy to export and import. All of the basic geome-
try (including primitives, triangles, and polygons), appearance (material and texture),
and keyframe animation nodes are included in this profile.

Interactive: This profile is slightly bigger than the Interchange profile, and adds most of
the nodes necessary for users to interact with a scene.

MPEG-4Interactive: This profile was designed specifically for the MPEG-4 multimedia
specification’s need for 3D graphics definitions, and is an appropoximate match to the
Interactive profile. It is not discussed further in this book.

CADInterchange: This is a specialized profile that supports the import of CAD
models. It includes most (but not all) nodes from the Interchange profile and includes
a handful of new nodes for CAD. The details of this profile are not addressed in this
book.

Immersive: This profile most closely matches VRML97. The Immersive profile includes
everything defined in Interactive plus several advanced capabilities and a number of new
nodes: 2D geometry, environmental effects, event utilities, and so on. It is a superset of
VRML97, but without the extra functionality of VRML specification ISO/IEC
14772/Amendment 1.

Full: This profile includes all nodes defined in the X3D specification and further extends
the Immersive profile. The Full profile incorporates all X3D capabilities including
Distributed Interactive Simulation (DIS), Humanoid Animation (H-Anim), GeoSpatial,
Non-Uniform Rational B-spline Surfaces (NURBS) and other advanced components.

A profile statement is required in all X3D scenes. The format of the profile statement
depends on the file encoding. The Classic VRML file encoding uses a profile statement
format of PROFILE Immersive while the XML file encoding embeds the information in
a profile=''Immersive'' attribute in the document’s root X3D tag.

The approval of new nodes as a part of annual amendments means that most pro-
files can continue to evolve. The Core profile is always expected to remain at the mini-
mum possible set. The Full profile is always the total of the capabilities provided in a
particular version of X3D. Changes for each major or minor version number (for exam-
ple 3.0, 3.1, or 3.2) always correspond to well-defined profiles.

2.5.4. Component statements

Each of the preceding profiles is made up of a collection of components. Each compo-
nent is divided into levels that describe increasing capability. Every X3D node is part of
a single component, and has the same or better features at each succeeding component
level.

As an addendum to a profile declaration in a scene file, the component statement
informs the browser that a scene needs further support for functionality at the specified
component at the specified level. Components at a specific level usually do not need to

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 14

X3D: Extensible 3D Graphics for Web Authors 15

be listed in the header of a scene, because they are usually included in the scene’s
declared profile. In some cases, however, defining component details is useful. Adding
component statements provides authors finer-grained control of the browser support
needed to support the scene.

Normally an author’s request for a given node capability in a browser is made as
part of the encompassing profile statement. Nevertheless, there are two main reasons for
using the component statement to provide further additions to the supported profile.

1. The stated profile does not support one or more of the nodes included in a scene.
The browser may not support Full profile, or the author may prefer to allow a
lighter-weight browser to handle the content running on the user’s machine.

2. The author is constructing a minimal environment for the scene, perhaps as part
of a library or collection of complementary objects. By specifying a lower profile
along with a few necessary components, more browsers may be able to present the
scene. Similarly, more parent scenes can include the child scene without requiring
a higher profile.

There are 24 components in X3D 3.0, each with multiple levels. In 2005, X3D ver-
sion 3.1 added four more, providing a total of 28 components. Table 1.3 lists the vari-
ous components and corresponding levels provided by each of the profiles.

Thus, in most cases, it is simply a good practice to pick a sufficient profile that cov-
ers all of the nodes in a scene. Immersive, Interactive, and Interchange are the most com-
monly used profiles. One authoring option is to specify the Full profile for every scene,
but that isn’t always a practical solution, because browser support for the Full profile is
often limited. This situation is commonly encountered when working with components
outside the Immersive profile, such as the GeoSpatial or H-Anim nodes. (Note: these
advanced nodes are not discussed in this book.)

2.5.5. Meta statements

Meta statements provide information about the X3D scene. These annotations are fre-
quently used to provide author, copyright, reference, and other information. Each meta
statement contains a name-value pair, that is, the name of the metadata item and the cor-
responding content for that one piece of information. Name-value string pairs are quite
powerful and can be used to capture nearly any type of information.

The head and meta statements are directly patterned after the Extensible Hypertext
Markup Language (XHTML). This approach simplifies conventions for use and maxi-
mizes consistency for web authors.

The meta statements contained in the header are not typed, meaning that each name
content value is a string. Meta tags can only appear in the scene header, and are different
than the various metadata nodes, which are only allowed to appear within the scene itself.

Example file newScene.x3d provides a number of default meta tags. It is the default
scene used by X3D-Edit. Use it as a starter when beginning a new scene, and change the
file name and meta values to record information about the work. Excerpts follow in
Figure 1.4, including further references about defining metadata values consistently.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 15

Interchange CAD Interchange Interactive Immersive Full
Profile Profile Profile Profile Profile
Supported Supported Supported Supported Supported

Components Levels Levels Levels Levels Levels

CADGeometry (X3D 3.1) 2 2

Core 1 1 1 2 2

Cube map environmental 3
texturing (X3D 3.1)

Distributed interactive 1
simulation (DIS)

Environmental effects 1 1 2 3

Environmental sensor 1 2 2

Event utilities 1 1 1

Geometry2D 1 2

Geometry3D 2 3 4 4

Geospatial 1

Grouping 1 1 2 2 3

Humanoid animation 1

Interpolation 2 2 2 3

Key device sensor 1 2 2

Lighting 1 1 2 2 3

Navigation 1 2 1 2 2

Networking 1 1 2 3 3

NURBS 4

Pointing device sensor 1 1 1

Programmable shaders 1
(X3D 3.1)

Rendering 3 4 2 3 4

Scripting 1 1

Shape 1 2 1 2 3

Sound 1 1

Text 1 1

Texturing 2 2 2 3 3

Texturing3D (X3D 3.1) 2

Time 1 1 1 2

CAD, Computer-aided design; NURBS, non-uniform rational B-spline; X3D, Extensible 3D.

Table 1.3. X3D Profiles, Components, and Corresponding Support Levels

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 16

X3D: Extensible 3D Graphics for Web Authors 17

<head>
<meta name='filename' content='*enter FileName

WithNoAbbreviations.x3d here*'/>
<meta name='description’ content='*enter description here,

short-sentence summaries preferred*'/>
<meta name='author' content='*enter name of original author here*'/>
<meta name='translator' content='*if manually translating

VRML-to-X3D, enter name of person translating here*'/>
<meta name='created' content='*enter date of initial version *'/>
<meta name='translated' content='*enter date of translation here*'/>
<meta name='revised' content='*enter date of latest revision *'/>
<meta name='version' content='*enter version here, if any*'/>
<meta name='reference' content='*enter reference citation or

relative/online url here*'/>
<meta name='copyright' content='*enter copyright information here*

Example: Copyright (c) Web3D Consortium Inc. 2007'/>
<meta name='drawing' content='*enter drawing filename/url here*'/>
<meta name='image' content='*enter image filename/url here*'/>
<meta name='movie' content='*enter movie filename/url here*'/>
<meta name='photo' content='*enter photo filename/url here*'/>
<meta name='keywords' content='*enter keywords here*'/>
<meta name='permissions' content='*enter permission statements or

url here*'/>
<meta name='warning' content='*insert any known warnings, bugs or

errors here*'/>
<meta name='url' content='*enter online url address for this file

here*'/>
<meta name='generator' content='X3D-Edit,
http://www.web3d.org/x3d/content/README.X3D-Edit.html'/>

<meta name='license' content='../../license.html'/>
<!--Additional authoring resources for meta-tags:
http://www.w3.org/TR/htm14/struct/global.html#h-7.4.4
http://dublincore.org/documents/dces
http://vancouver-webpages.com/META
http://vancouver-webpages.com/META/about-mk-metas2.html
Additional authoring resources for language codes:
ftp://ftp.isi.edu/in-notes/bcp/bcp47.txt
http://www.loc.gov/standards/iso639-2/langhome.html
http://www.iana.org/numbers.html#L
-->

</head>

Figure 1.4. Example meta tags in newScene. x3d.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 17

Metadata produces big dividends over time, particularly if different or competing
versions of a scene are available. Think of meta tags as a way to communicate with oth-
ers about the scene, to help yourself keep track of content in the future, and to support
library archive tools that keep track of many example scenes. Meta tags are used
throughout the examples provided with this book for just such purposes.

2.5.6. Scene graph body

Following the head of the X3D document is the scene. Putting together a scene graph is
the focus of the rest of this book.

To further explain the technical fundamentals underlying the X3D nodes that make
up the scene graph, field types and node types are presented next.

2.6. Field types
The data for each node is stored in the fields of the node. Fields can contain a single
value or multiple values for each data type. All fields are built from the fundamental
X3D data types for boolean, integer, single-precision floating point, double-precision
floating point, and strings. Simple field types may have one or multiple values, and can
further be arrays of such values. Field types are also provided for a singleton node
(SFNode) and arrays of nodes (MFNode). There are restrictions or structures placed on
some of the elements in various fields.

The X3D field-naming convention starts with two letters designating a single-valued
field (SF) or multiple-valued field (MF). Next comes the name of the data type of the
field, for example, SFString, MFVec3f, and so on. In the XML encoding, no square
brackets are needed. The type names are consistent for both text-based encodings
(XML and ClassicVRML). In the Classic VRML encoding, an additional requirement is
that multiple-valued fields (MFs datatypes) must be enclosed in square brackets. For
example, a 4-tuple SFRotation field value is expressed as ''0 1 0 1.57'' in .x3d files or
[0 1 0 1.57] in .x3dv files.

For the node-definition tables appearing throughout the book, a specific notation is
used. Default values are listed as typed literal values from the specification. Ranges of
values are listed using standard mathematical notation: A square bracket means that the
range includes the bounding value, while a parenthesis means that the range does not
include the bounding value. For example [0,1] means all numbers between 0 and 1,
including 0 and 1. Similarly, (0,1] means all numbers between 0 and 1, including 1 only.
As another example, [0, + ∞) means all non-negative numbers (zero inclusive).

Individual string values are enclosed in quotation marks. If array values are n-tuples
(meaning arrays with 2, 3, or 4 numbers), the value is quoted with spaces separating the
data elements (for example, translation=''0 0 0''). Multiple-valued data-type arrays con-
tain zero or more copies of the single-value data type. Note that commas can only appear
between each n-tuple field value, not within them. The uninitialized value for multiple-
valued data-type arrays is always the empty list, which is an array containing no elements.

Table 1.4 lists abbreviations, names, and example values for each simple field type.

18 C H A P T E R 1 Technical Overview

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 18

X3D: Extensible 3D Graphics for Web Authors 19

Field-type names Description Example values

SFBool Single-field boolean value true or false (X3D syntax), TRUE or
FALSE (ClassicVRML syntax)

MFBool Multiple-field boolean array true false false true (X3D syntax),
[TRUE FALSE FALSE TRUE]
(ClassicVRML syntax)

SFColor Single-field color value, red-green-blue 0 0.5 1.0

MFColor Multiple-field color array, red-green-blue 1 0 0, 0 1 0, 0 0 1

SFColorRGBA Single-field color value, red-green-blue 0 0.5 1.0 0.75
alpha (opacity)

MFColorRGBA Multiple-field color array, red-green- 1 0 0 0.25, 0 1 0 0.5, 0 0 1 0.75
blue alpha (opacity) (red green blue, varying opacity)

SFInt32 Single-field 32-bit integer value 0

MFInt32 Multiple-field 32-bit integer array 1 2 3 4 5

SFFloat Single-field single-precision floating- 1.0
point value

MFFloat Multiple-field single-precision floating- −1 2.0 3.14159
point array

SFDouble Single-field double-precision 2.7128
floating-point value

MFDouble Multiple-field double-precision array −1 2.0 3.14159

SFImage Single-field image value Contains special pixel-encoding
values, see Chapter 5 for details

MFImage Multiple-field image value Contains special pixel-encoding
values, see Chapter 5 for details

SFNode Single-field node <Shape/> or Shape {space}

MFNode Multiple-field node array of peers <Shape/><Group/><Transform/>

SFRotation Single-field rotation value using 3-tuple axis, 0 1 0 1.57
radian angle form

MFRotation Multiple-field rotation array 0 1 0 0, 0 1 0 1.57, 0 1 0 3.14

SFString Single-field string value “Hello world!”

MFString Multiple-field string array “EXAMINE” “FLY” “WALK” “ANY”

SFTime Single-field time value 0

MFTime Multiple-field time array −1 0 1 567890

Table 1.4. X3D Field Types

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 19

20 C H A P T E R 1 Technical Overview

Field-type names Description Example values

SFVec2f/SFVec2d Single-field 2-float/2-double vector value 0 1.5

MFVec2f/MFVec2d Multiple-field 2-float/2-double vector array 1 0, 2 2, 3 4, 5 5

SFVec3f/SFVec3d Single-field vector value of 3-float/ 0 1.5 2
3-double values

MFVec3f/MFVec3d Multiple-field vector array of 3-float/ 10 20 30, 4.4 −5.5 6.6
3-double values

VRML, Virtual reality modeling language; X3D, Extensible 3D.

Table 1.4. (Cont’d.) X3D Field Types

2.7. Abstract node types
A major improvement in the design of the X3D language over VRML97 is the addition
of strong typing of nodes, making the object-oriented nature of X3D nodes much more
consistent. The X3D specification accomplishes strong node typing in two ways, first by
defining field interfaces for child-node content and second by defining required simple-
field attributes corresponding to each functional type of node. Although this aspect of
the X3D architecture is not usually evident to authors, good language design leads to
more predictable models and more consistent behavior. Strictly defined node typing gives
the following benefits to X3D nodes implementing the same node type:

• Allowed child-node content is identical

• Simple-type field attributes are identical and have consistent default values

• Validation capabilities are improved

• Common APIs are the same

• Definitions and operations are easier to remember and adapt

New nodes (defined either by author prototypes or in future versions of X3D) with
matching node types con be substituted for other nodes correctly and consistently. Thus,
node types directly support Extensibility, the X in X3D.

Script programming uses node types and is covered in Chapter 9, Event Utilities and
Scripting. Application programming interfaces (APIs) are more important when you are
learning how to program X3D scene graphs directly. That is a big subject, suitable for
another book. Most scene content preparation goes into the production of files, so file
encodings are discussed in the next section.

2.8. File encodings: XML, ClassicVRML, and Compressed
There are three available encodings that can be used to format X3D files. In each case,
the functionality of the displayed X3D scene remains consistent and independent of the

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 20

X3D: Extensible 3D Graphics for Web Authors 21

encoding used. This is quite valuable, because any X3D encoding for a single given scene
can be treated as visually and functionally equivalent. This is the same principle previ-
ously illustrated by Figure 1.2: an X3D scene renders and behaves consistently at run
time, regardless of the file format (or programming API) used to create it.

The first file format is XML, which is plaintext and uses the .x3d filename extension.
The second is also plaintext and based on the Classic VRML syntax of curly brackets and
square brackets, using the .x3dv filename extension. The third is the compressed-binary for-
mat, which includes both geometric polygon/property compression as well as binary-data
compression, using the .x3db filename extension. Gzip compression of .x3d or .x3dv files is
another allowed approach, appending .gz as an additional extension to the original filename
and extension, but the .x3db compressed binary encoding provides superior results.

X3D files that refer to other files (by using Inline and Anchor nodes) can legally
refer to linked X3D scenes that have been saved with a different encoding than the mas-
ter scene. Thus, .x3d, .x3dv, and .x3db file references are all legal in any combination of
scenes. Hopefully all three encodings are supported by each user’s browser as well.

Some browsers also support VRML97, which uses the .wrl filename extension for
plaintext files and .wrz/.wrl.gz for gzip-compressed files. Nevertheless, it is good prac-
tice to upgrade VRML97 scenes to X3D for maximum compatibility and interoperabil-
ity. Multiple VRML97-to-X3D translators are provided on the book’s website.

2.8.1. Extensible Markup Language (XML) encoding: .x3d files

XML encoding is one of the biggest improvements in X3D. This section describes the
benefits of using an XML encoding as the file format for X3D.

XML-based files are usually called XML documents. Figure 1.5 shows an example
of an XML document fragment.

Each element (sometimes referred to as a tag) is surrounded by angle brackets. Elements that
contain other elements start with an opening tag (no slash) and finish with an ending tag (lead-
ing slash). Standalone elements that have no child elements can either finish with a trailing slash,
such as <Sphere radius=''10.0'' solid=''true''/> or simply a matched pair of opening and
closing elements, such as <Sphere radius=''10.0'' solid=''true''></Sphere>. Intervening
whitespace between elements is usually insignificant, so source-file formatting and layout is flex-
ible. These simple XML rules for structuring data provide a lot of descriptive power.

Figure 1.5. XML documents have a consistent tree structure for elements, attributes, and values.

Opening element

Singleton element attribute = "value"

Opening element

Singleton element attribute = "value"

Closing element

Closing element

<Shape>

<Sphere radius = "10.0" Solid = "true/>

<Appearence>

<ImageTexture = 'earth-topo.png'/>

</Appearence>

</Shape>

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 21

2.8.1.1. XML motivations

There are many reasons to use XML. Foremost is that XML is the basis of nearly every
data language used on the World Wide Web. If 3D graphics are to become a “first-class
citizen” on the Web, embedded in Web pages and interacting with clients, servers, and
users of every type, then it is clear that an XML encoding is necessary; the .x3d encod-
ing of X3D scenes provides that capability.

“XML in 10 Points” originally by Bert Bos (2001) (available at www.w 3. org /XML/
1999/XML-in-10-points) provides an excellent overview of XML benefits and potential.
An adapted summary follows.

1. Structured data. XML is a set of rules for designing text formats to structure
data. XML is not a programming language.

2. Similar to HTML. Like HTML, XML makes use of tags (words surrounded by
angle brackets) and attributes (of the form name="value"). HTML defines the
functionality of each tag for presentation purposes, but XML is more general and
allows for the definition of rules to govern tag and attribute names, relationships,
and semantics that may be customized by the cognizant application.

3. XML is text, but is not meant to be read. Programs that produce structured data
often store that data on disk, using either a binary or text format. One advantage
of a text format is that it allows people to look at the data without the program
that produced it. Text formats also allow developers to debug applications more
easily. Rules for legal XML are strict, and prevent propagation or use of broken
XML files. The draconian parse rule requires an application to stop and report
any errors.

4. XML is verbose by design. Because XML is a text format and uses tags to delimit
data, XML files are usually larger than comparable binary formats. That was a
conscious decision by the designers of XML. The advantages of a text format are
evident (see point 3), and the disadvantages can usually be compensated at a
different level.

5. XML is a family of technologies. Numerous XML-support languages (themselves
written in XML) extend the functionality of XML consistently for many uses.
XLink describes hyperlinks. XPointer is a syntax for pointing to any specific part
of an XML document. The Cascading Stylesheets (CSS) language is applicable to
XML as it is to HTML. The Extensible Stylesheet Language for Transformations
(XSLT) is used for rearranging, adding and deleting tags and attributes. The
DOM is a standard set of string-based function calls for manipulating XML (and
HTML) files from a programming language. XML Schemas help developers
precisely define the structures of specialty XML-based formats.

6. XML is new, but not that new. Development of XML started in 1996 and has
been a W3C recommendation since February 1998. Before XML there was
Standard Generalized Markup Language (SGML), developed in the early 1980s,

22 C H A P T E R 1 Technical Overview

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 22

X3D: Extensible 3D Graphics for Web Authors 23

an ISO standard since 1986, and widely used for large documentation projects.
The development of HTML started in 1990. The designers of XML simply took
the best parts of SGML, guided by the experience of using HTML, and produced
something that is no less powerful than SGML and vastly more regular and
simple to use.

7. XML leads HTML to XHTML. One important XML application is a document
format: W3C’s XHTML, the successor to HTML. XHTML has many of the
same elements as HTML. The syntax has been changed slightly to conform to the
rules of XML. A document that is “XML-based” inherits its syntax from XML,
which restricts and strengthens it in certain ways.

8. XML is modular. XML allows you to define a new document format by
combining and reusing other formats. To eliminate name confusion when
combining formats, XML provides a namespace mechanism. XML Schema is
designed to mirror this support for modularity at the level of defining XML
document structures, making it easy to combine two schemas to produce a third
schema that covers a merged document structure.

9. XML is the basis for Semantic Web. XML provides an unambiguous syntax for
W3C’s Resource Description Framework (RDF), a language for expressing
metadata (that is, information about information). To communicate knowledge,
whether in XML/RDF or in plain English, both people and machines need to
agree on what words to use. A precisely defined set of words that describes a
certain area of life (from “shopping” to “mathematical logic”) is called an
ontology. RDF, ontologies, and the representation of meaning so that computers
can help people do work are all topics of the Semantic Web Activity.

10. XML is license free, platform independent, and well supported. By choosing
XML as the basis for a project, you gain access to a large and growing
community of tools (one of which may already do what you need!) and engineers
experienced in the technology. Opting for XML is a bit like choosing Structured
Query Language (SQL) for databases: You still have to build your own database
and your own programs and procedures that manipulate it, but there are many
tools available and many people who can help you. Because XML is license free,
you can build your own software around it without paying anybody. The large
and growing support means that you are not tied to a single vendor. XML is not
always the best solution, but it is always worth considering.

As an example case in point, the use of XML provided multiple major benefits in the
development of the X3D-Edit authoring tool. Because the X3D tooltips are captured in
XML, they are automatically embedded in the interface and are available as separate HTML
web pages. Multilingual support means that tooltips are provided in Chinese, English,
French, German, Italian, Portuguese and Spanish. The HTML pretty printer uses XSLT to
read and redisplay .x3d scenes. Similarly, separate stylesheets can convert .x3d scenes into
equivalent ClassicVRML .x3dv or VRML97 .wrl files. The example-scene catalogs are

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 23

produced automatically by a Java program and a multidocument XSLT stylesheet that can
automatically and rapidly produce hundreds of HTML pages. Another XSLT stylesheet even
converts Extrusion crossSection fields into 2D plots using Scalable Vector Graphics (SVG).
Future work will probably produce X3D scenes from server-based data and make X3D
library archives automatically accessible via Web services. Many new opportunities are
available because of the XML encoding for X3D.

2.8.1.2. XML design for X3D

A lot of work went into mapping the VRML scene graph into XML, producing the X3D
XML encoding, and creating .x3d files. The following design patterns governed the
construction of X3D’s XML tagset.

• X3D nodes are expressed as XML elements.

• X3D simple-type fields are expressed as XML attributes. Default values can be
safely omitted from .x3d model documents.

• DEF and USE names for nodes are captured as attributes and given XML types ID
and IDREF respectively. This ensures that only one DEF ID is allowed per scene, and
also ensures that all USE IDREF values only refer to an already-defined DEF ID name.

• Parent-child relationships between X3D nodes are captured as corresponding
parent-child relationships between XML elements.

• Because contained nodes are themselves X3D fields of type SFNode/MFNode, the
name of the field relationship is listed in a containerField attribute. Default
containerField values for each node are correct in most cases, so overriding
containerField values is infrequent. This approach makes the X3D tagset terser,
easier to read, and less prone to error.

• Only X3D simple-type fields with accessType initializeOnly or inputOutput are
saved as XML attributes. Other native fields that have accessType inputOnly or
outputOnly are transient and only named when used with ROUTE connections.
Thus no attributes exist for fields such as isActive, set_value or value_changed.

• Prototype definitions are explicitly declared using ProtoDeclare/ProtoInterface/
ProtoBody and ProtoInstance elements and name attributes. New XML elements
are not produced for newly defined prototypes. This approach eliminates many
potential errors, and ensures strong validation checking of parent-child relation-
ships for all nonprototype X3D nodes in all scenes.

• ‘field’ elements are used for defining Script and ProtoInterface fields. ‘fieldValue’
elements are used to provide overriding default values for fields during
ProtoInstance creation.

• X3D node types are defined as XML Schema complexType definitions. These match
the X3D interface hierarchy, capture strong typing of node relationships, and collect
common attributes shared among node types. These features also provide functional

24 C H A P T E R 1 Technical Overview

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 24

X3D: Extensible 3D Graphics for Web Authors 25

consistency between scene-graph content and the X3D Scene Authoring Interface
(SAI) application programming interface (API).

Together these design rules have provided excellent results. The classical scene graph
first developed as part of VRML97 is now fully elaborated in XML in ways that make
sense for both languages. Furthermore, X3D graphics now become much more compati-
ble with Web-based technologies. New capabilities such as server-side 3D and animation
driven by Web services or chat also become feasible. As shown by the rapidly growing
number of X3D scenes and software applications, this progress in deploying 3D content
as a first-class interactive media type is a significant development for the World Wide Web.

2.8.1.3. XML validation

The original XML Recommendation by the World Wide Web Consortium (W3C) man-
dates default rules for “well-formedness” of XML documents. These rules also apply to
.x3d scenes and include proper syntax for elements (corresponding to X3D nodes) and
attributes (corresponding to X3D fields). Thus, even without prior knowledge of X3D
constructs, these rules enable XML tools to detect a large number of potential syntax
problems in documents.

After well-formedness checking, XML validity provides even stronger forms of error
checking for XML documents. Special validation rules are provided to the XML proces-
sor that define the vocabulary of elements, attributes, and allowed parent-child rela-
tionships. One such set of rules is a DTD, and another is an XML Schema. DTDs
provide strong checking of elements but weak checking of attributes, because attribute
values are treated as simple text strings. XML Schemas provide strong checking of both
elements and attribute values, and are defined using an object-oriented internal design
that supports consistent extensibility.

Two primary mechanisms are provided for validating XML scenes: the X3D DTD
and the X3D Schema. An X3D scene in the .x3d format, which is an XML document,
can include references to either the DTD or the Schema (or both, preferably). Such val-
idation capabilities are provided automatically in many XML-capable applications,
making the production and modification of 3D content much less error-prone than in
the past.

In addition, two stylesheets written in XML Stylesheet Language for Transformations
(XSLT) are provided. The stylesheets convert .x3d files into VRML97 (X3dTo
Vrml97.xslt) or Classic VRML (X3dToX3dvClassicVrml.xslt) encodings. These paired
stylesheets also apply many X3D-specific consistency rules to provide extensive correct-
ness checks. The X3D-based quality tests go beyond XML validation to provide hint,
warning, and error diagnostic messages about the X3D scene graph, thus providing even
more quality control of authored scenes. Detecting errors while authoring is invaluable,
because scene-graph problems can otherwise go unnoticed until the scene fails for a user
(who deserves a zero-defect result).

Table 1.5 shows which validation checks are provided with each mechanism. X3D-
Edit (provided with this book) provides DTD and X3dToVrml stylesheet support. X3D
Schema validation is also highly recommended and catches most authoring errors.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 25

Browsers (such as Xj3D) often provide excellent debugging feedback. These can be
the most authoritative tools to debug the operation of an X3D scene. Unfortunately, most
browsers suffer from (at least) two common pitfalls: error messages are often vague or
misdirecting, and errors are often not caught until the scene is delivered to the user. Better
error checking during scene production is preferred by most X3D authors, to ensure their
efforts to build great content aren’t rendered useless. It is a good authoring practice to
frequently check scenes with a strictly validating browser while creating them.

It is worth considering the big picture in this context. In 1975, Dr. Niclas Wirth
wrote a book entitled Algorithms + Data Structures = Programs. Since then, several

26 C H A P T E R 1 Technical Overview

X3DToVrml Xj3D, Flux open-
Scene graph validity checks X3D DTD X3D Schema stylesheets source browsers

Legal node (element) names x x x x

Legal field (attribute) names x x x x

Correct X3D profile/component level, matching x x
nodes in the scene

Allowed parent-child relationships between x x x x
nodes

All DEF attribute names are unique and x x x x
properly named, all USE attribute
names exactly match DEF names

All USE elements are only referenced after x x
their corresponding DEF elements
are defined

Properly overridden containerField value x x
matches an allowed child-node
field name

Legal field values are provided for attributes x x x
that match the defined simple type
(SFInt32, MFFloat, etc.)

Mismatched interface names, types, x x
or accessType values among Prototype,
Script, field, fieldValue, and IS/connect
definitions

Malformed MFString values for a URL field x x

Only ROUTE to/from DEF node names x x x x

Only ROUTE to/from legitimate target x
field names

URL, Uniform resource locator; VRML, virtual reality modeling language; X3D, Extensible 3D.

Table 1.5. Capabilities Comparison for Validation of X3D Scene Graphs

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 26

X3D: Extensible 3D Graphics for Web Authors 27

decades of software-engineering theory and effort have been devoted to algorithm-related
issues, especially structured and object-oriented programming. However, studies have
shown that a surprisingly large amount of development and debugging time is usually
spent on reading and verifying (or recovering from errors in) input data. The pertinent
expression for this situation is preventing “garbage in, garbage out” (GIGO). Since the
original development of SGML and advent of XML, much more work has been devoted
to structuring, describing, and strengthening data. This practical emphasis on standards
and best practices for structured data, in addition to all the work on structured
programming, is an exceptionaly productive trend that continues to provide big payoffs.
The importance of data integrity and preventing garbage in, garbage out cannot be
overestimated.

Building X3D scenes using the XML-based .x3d encoding and gaining the benefits
of strong validation is the best way to author 3D graphics for the Web.

2.8.2. ClassicVRML encoding: .x3dv files

As discussed earlier, VRML has been quite successful since it was first named an inter-
national standard in 1997. The ClassicVRML encoding is for the X3D alternative files
that use the same “squiggly and square bracket” format used for describing a scene
graph. All of the functionality of X3D is fully supported, regardless of which encoding
is used to save an X3D file.

The ClassicVRML encoding for X3D matches the syntax for VRML97, with two
expected differences: All of the new X3D nodes are also supported, and the first-line
header changes as follows.

#VRML V2.0 utf8

becomes

#X3D V3.0 utf-8

For the ClassicVRML encoding, comment statements begin with a # character.
A node’s field values and children nodes are surrounded by curly brackets. Multiple-field
(MF) values must be surrounded by square brackets if more than one value is present in
the array. Fields with default values (such as a radius of 1 for a Sphere) can be omitted.
DEF names precede a node’s definition, and USE nodes replace a node’s definition. The
following example illustrates these rules.

two simple shapes
DEF MyExample Transform {
translation 0 10 0
children [
Shape {
Sphere { radius 3 }

}

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 27

Shape {
USE SomeOtherBox # declared earlier in the scene
}

]
}

Some other rules are worth mentioning. Whitespace is generally ignored when not
with quotation marks (meaning within SFString and MFString fields). All text after a #
comment character is ignored, so subsequent node or field definitions must start on a
new line. ProtoDeclare and ExternProtoDeclare constructs are represented by PROTO
and EXTERNPROTO, respectively. ProtoInstance has no corresponding term in Classic
VRML, instead the name of the prototype is used solely by itself (just like a predefined
X3D node). Empty node definitions are represented by NULL. There are no
ClassicVRML equivalents for the X3D and head elements in the XML encoding nor is
there a corresponding scene element. The XML-based profile, component, and meta ele-
ments are respectively represented as PROFILE, COMPONENT, and META statements
in the ClassicVRML encoding.

One significant syntax change from VRML97 to X3D nomenclature is field
accessType naming, as shown in Table 1.6.

Note that while the names for accessType values changed between VRML97 and X3D,
the functionality remains unchanged. One troublesome accessType restriction in VRML97
has been relaxed: Script nodes can now define fields with accessType=''inputOutput'' in
X3D.

Maintaining backwards compatibility with preexisting VRML97 content and
authoring-tool exporters is an important design requirement for X3D. Because the
creation of 3D models can be time consuming and expensive, most authors do not want
to re-create or convert work that is already complete. Thus the ClassicVRML encoding
ensures that legacy content remains available. Retaining the VRML97 approach as
ClassicVRML (with the corresponding addition of new X3D nodes) also helps existing
software tools upgrade to X3D capabilities more easily.

The ClassicVRML syntax does have some drawbacks. Any text editor can be used
to create such files, but few provide VRML-aware shortcuts or special support.

28 C H A P T E R 1 Technical Overview

VRML97 Name X3D Name X3D Specification abbreviation

eventIn inputOnly [in]

eventOut outputOnly [out]

field initializeOnly []

exposedField inputOutput [in,out]

VRML, Virtual reality modeling language; X3D, Extensible 3D.

Table 1.6. Naming Conventions for accessType Values

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 28

X3D: Extensible 3D Graphics for Web Authors 29

Mismatched brackets or unpaired quote marks can be difficult (and sometimes mad-
dening) to debug or isolate. Misspelled node or field names, bad values, and any num-
ber of other errors are not caught until run time. The threat of “garbage in” is always
lurking. Thus all .x3dv scenes need to be tested as thoroughly as possible by an author
before they are distributed to other users.

All of the examples in this book are provided in both .x3d and .x3dv form (as well
as a pretty-print .html version of the .x3d form). It is a benefit of using XML source for
the master versions that all of the .x3dv versions are produced automatically by convert-
ing the .x3d originals, guaranteeing consistency among the different forms of each exam-
ple. Because it is encoded as XML, the .x3d version has numerous advantages, including
ease of translation. Nevertheless, the ClassicVRML syntax is fully functional, precisely
specified, and will doubtless remain in use for a long time. Some authors still prefer it.

Many good VRML 2.0 (VRML97) books have been published over the past decade,
and the examples and explanations within them are still quite usable, though they are
not up to date with all of the new features in X3D. In addition to presenting new nodes
in X3D, this book compares both syntaxes while emphasizing the benefits of XML.

2.8.3. Binary encoding: .x3db files

The primary goals for the X3D Binary Encoding are smaller X3D files, faster scene load-
ing at run time, and network streaming of 3D data. Numerous technical requirements
are derived from these goals. Applied design efforts have shown that all three of these
goals can be accomplished simultaneously. Two basic kinds of size-reduction techniques
are used in combination: information-theoretic compression to minimize data duplica-
tion (similar to zip/gzip) and geometry-based compression, in which polygons, colors,
interpolators, and so on are combined, compressed, and rearranged.

Although some of this work is still undergoing technical improvements, a draft
X3D Binary Encoding specification standard is approved by the Web3D Consortium. X3D
compression algorithms include the Fast Infoset (FI) standard for XML-based compres-
sion of .x3d documents. Both lossless and lossy techniques are provided, allowing
authors to either maintain identical results (compared to the original) or produce visu-
ally acceptable substitutions. Lossless compression is always the default setting,
although some highly detailed scenes benefit from the removal of extraneous polygons
or insignificant digits. The primary two technologies currently used are ISO-standard FI
data reduction of .x3d XML-based encodings, and (optionally) a large number
of patented Java3D geometric-compression algorithms. Sun Microsystems Inc. has
provided a royalty-free license for use of the Java3D compression technology to be
applied in X3D scenes. Other options are available using XML-based security standards
for authentication (digital signature) and encryption. Unlike many other approaches, all
of this technology can be used for X3D without licensing fees. Thus X3D use is royalty free.

Figure 1.6 is an example algorithm that shows how all these technologies are -
combined to produce .x3db files. Optional steps are outlined using dashed lines. Note that
by using the Web design principle of least constraints, implementations may use other algo-
rithms as long as the transformation converting one form to another form produces consistent
and interoperable results.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 29

Most remarkable about this work is that so many optimizations can be performed in
combination. Typical file-size reductions range from 10%–25% of the original, consistently
beating gzip reduction. Parsing speedups when reading data at run-time often run 5–10
times faster, which can be a significant improvement for large (multimegabyte) scenes.

The following list of requirements is taken from the original Request for Proposals
by the Web3D Consortium to define an X3D binary encoding with compression. It lists
the many capabilities achieved.

1. X3D Compatibility. The compressed binary encoding shall be able to encode all
of the abstract functionality described in X3D Abstract Specification.

2. Interoperability. The compressed binary encoding shall contain identical
information to the other X3D encodings (XML and ClassicVRML). It shall
support an identical round-trip conversion between the X3D encodings.

3. Multiple, separable data types. The compressed binary encoding shall support
multiple, separable media data types, including all node (element) and field
(attribute) types in X3D. In particular, it shall include geometric compression
for the following.

• Geometry—polygons and surfaces, including NURBS

• Interpolation data—spline and animation data, including particularly long
sequences such as motion capture (also see Streaming requirement)

• Textures—PixelTexture, other texture and multitexture formats (also see
Bundling requirement)

• Array Datatypes—arrays of generic and geometric data types

• Tokens—tags, element and attribute descriptors, or field and node textual
headers

4. Processing Performance. The compressed binary encoding shall be easy and
efficient to process in a run-time environment. Outputs must include directly

30 C H A P T E R 1 Technical Overview

X3D Scene
with Java3D geometric

compression

X3D Scene
in any form

(.x3d, .x3dv, .wrl SAI)

Canonical XML,
X3D formatting

XML Security;
digital signature

encryption

Fast Infoset
data compression

X3D Scene
compressed

(.x3db)

X3D Scene
in .XML-based
.x3d encoding

Figure 1.6. Processing chain to start with any X3D content, apply geometric compression (if desired), add XML security
features (if desired), and produce .x3db compressed binary encoding.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 30

X3D: Extensible 3D Graphics for Web Authors 31

typed scene-graph data structures, not just strings which might then need
another parsing pass. End-to-end processing performance for construction of
a scene-graph as in-memory typed data structures (i.e., decompression and
deserialization) shall be superior to that offered by gzip and string parsing.

5. Ease of Implementation. Binary compression algorithms shall be easy to
implement, as demonstrated by the ongoing Web3D requirement for multiple
implementations. Two (or more) implementations are needed for eventual
advancement, including at least one open-source implementation.

6. Streaming. The compressed binary encoding will operate in a variety of
network-streaming environments, including http and sockets, at various (high
and low) bandwidths. Local file retrieval of such files shall remain feasible and
practical.

7. Authorability. The compressed binary encoding shall consist of implementable
compression and decompression algorithms that may be used during scene-
authoring preparation, network delivery and run-time viewing.

8. Compression. The compressed binary encoding algorithms will together enable
effective compression of diverse datatypes. At a minimum, such algorithms shall
support lossless compression. Lossy compression alternatives may also be
supported. When compression results are claimed by proposal submitters, both
lossless and lossy characteristics must be described and quantified.

9. Security. The compressed binary encoding will optionally enable security,
content protection, privacy preferences and metadata such as encryption,
conditional access, and watermarking. Default solutions are those defined by the
W3C Recommendations for XML Encryption and XML Signature.

10. Bundling. Mechanisms for bundling multiple files (for example X3D scene, Inlined
subscenes, image files, audio file, etc.) into a single archive file will be considered.

11. Intellectual Property Rights (IPR). All technology submissions must follow the
predeclaration requirements of the Web3D Consortium IPR policy in order to
be considered for inclusion. To date, the Web3D Consortium has only accepted
royalty-free (RF) technologies for use in Web3D standards.

Streaming requirements include incremental loading of large geometry and interpola-
tor data, incremental modifications for scene behaviors, and scene subgraph replacement
to permit progressive improvements in level-of-detail fidelity. Some of these capabilities are
already provided in X3D. For example, proper design of related X3D scenes allows an
author to use the Inline node to selectively load scenes of increasing complexity. This
approach allows a simple viewing experience to be quickly delivered and to interact with
the user while additions to the scene continue to download in the background.

Though not yet in widespread use, binary encoding is expected to significantly
increase the size, performance, and security of X3D scenes that can be effectively used
over the Web. This is an important capability to check for in new X3D products.

Brutzman-Ch01.qxd 2/16/07 12:27 PM Page 31

32 C H A P T E R 1 Technical Overview

The Xj3D open-source browser provides the primary test implementation of .x3db
scenes, with other commercial X3D browsers expected to add this functionality as they
continue to build out their supported X3D feature sets.

2.9. Hello World example using X3D-Edit and an X3D browser
A good example can help illustrate the many concepts presented here. Many computer lan-
guages are compared by showing a Hello World program that provides a simple example
of how the language works. The following example, HelloWorld.x3d, uses the X3D-Edit
authoring tool to display the X3D scene graph and produce both .x3d and .x3dv versions.

Figure 1.7 shows the X3D-Edit display. Tables 1.7 and 1.8 show the XML (.x3d)
and ClassicVRML (.x3dv) encodings, respectively.

X3D-Edit is available free for any use and included in the online distribution for this
book. It is written in Java and runs on all major operating systems. An autoinstaller sim-
plifies initial setup. Features include explanatory popup tooltips for all nodes and fields,
DTD-based validation checking, and multilingual versions of tooltips. VRML97
import/export and browser-based, pretty-print HTML display are also provided.

Figure 1.7. X3d-Edit is an XML-based Java application for creating and launching X3d scenes.

Brutzman-Ch01.qxd 2/16/07 12:28 PM Page 32

X3D: Extensible 3D Graphics for Web Authors 33

<?xml version=''1.0'' encoding=''UTF-8''?>
<!DOCTYPE X3D PUBLIC ''ISO//Web3D//DTD X3D 3.0//EN''

''http://www.web3d.org/specifications/x3d-3.0.dtd''>
<X3D profile=''Immersive'' xmlns:xsd=''http://www.w3.org/2001/

XMLSchema-instance''
xsd:noNamespaceSchemaLocation=''http://www.web3d.
org/specifications/x3d-3.0.xsd'' version=''3.0''>

<head>
<meta name=''filename'' content=''HelloWorld.x3d''/>
<meta name=''description'' content=''Simple X3D example''/>
<meta name=''url'' content=''http://www.web3d.org/x3d/

content/examples/HelloWorld.x3d''/>
<meta name=''generator'' content=''X3D-Edit,

http://www.web3d.org/x3d/content/README.X3D-Edit.html''/>
</head>
<Scene>
<!-Example scene to illustrate X3D tags and attributes.—>
<Group>
<Viewpoint description=''hello, world!'' orientation=''0 1 0 1.57''

position=''6-1 0''/>
<NavigationInfo type='''EXAMINE'' ''ANY'''/>
<Shape>
<Sphere/>
<Appearance>
<Image Texture url='''earth-topo.png'' ''earth-topo-small.gif''
''http://www.web3d.org/x3d/content/examples/earth-topo-
small.gif'' ‘/>

</Appearance>
</Shape>
<Transform rotation=''0 1 0 1.57'' translation=''0 -2 1.25''>
<Shape>

<Text string='''Hello'' ''world!'''/>
<Appearance>
<Material diffuseColor=''0.1 0.5 1''/>

</Appearance>
</Shape>

</Transform>
</Group>
</Scene>

</X3D>

Table 1.7. Example HelloWorld scene using XML (.x3d) syntax

Brutzman-Ch01.qxd 2/16/07 12:28 PM Page 33

34 C H A P T E R 1 Technical Overview

#X3D V3.0 utf8
#X3D-to-ClassicVRML XSL translation autogenerated by X3dToVrml97.xslt
#http://www.web3d.org/x3d/content/X3dToVrml97.xslt
PROFILE Immersive
META ''filename'' ''HelloWorld.x3d''
META ''description'' ''Simple X3D example''
META ''url'' ''http://www.web3d.org/x3d/content/

examples/HelloWorld.x3d''
META ''generator'' ''X3D-Edit, http://www.web3d.org/x3d/content/README.

X3D-Edit.html''
Example scene to illustrate X3D tags and attributes.
Group {
children [
Viewpoint {
description ''hello, world!''
orientation 0 1 0 1.57
position 6-10

}
NavigationInfo {
type [''EXAMINE'' ''ANY'']

}
Shape {
geometry Sphere {

}
appearance Appearance {
texture ImageTexture {
url [''earth-topo.png'' ''earth-topo-small.gif''
''http://www.web3d.org/x3d/content/examples/earth-topo-small.gif'']

}
}

}
Transform {
rotation 0 1 0 1.57
translation 0 −2 1.25
children [
Shape {
geometry Text {
string [''Hello'' ''world!'']

}
appearance Appearance {

Table 1.8. Example HelloWorld scene using ClassicVRML (.x3dv) syntax

Brutzman-Ch01.qxd 2/16/07 12:28 PM Page 34

X3D: Extensible 3D Graphics for Web Authors 35

material Material {
diffuseColor 0.1 0.5 1

}
}
}
]
}
]
}

Table 1.8. (Cont’d.) Example HelloWorld scene using ClassicVRML (.x3dv) syntax

The best way to learn X3D is by using it, so now is a good time to install an X3D
viewer and X3D authoring tool on your computer. Almost all of the examples in this
book were created using X3D-Edit. Loading, modifying, and improving (or breaking!)
examples is a great way to make all of these capabilities part of your repertoire.

3. Summary

3.1. Key ideas
X3D has a long history of successful development, starting with the Virtual Reality
Modeling Language (VRML) as early as 1994, adding the tremendous capabilities of the
Extensible Markup Language (XML), and integrating many additional technologies
along the way.

Building scenes is more like creating a Computer-Aided Design (CAD) model or
authoring web-page content than programming. Using the .x3d encoding lets XML val-
idation ensure that scene content is free of syntax errors, enabling authors to focus on
the 3D models of interest. This is more productive for authors than worrying about how
to achieve consistent results in different hardware and software environments.

A lot of technical detail is summarized in this chapter, but it is mostly background
information about how X3D actually works. New X3D authors can skip ahead and
learn how to create scenes without needing to know the underlying details. Periodic
review of this chapter later can be quite helpful while mastering X3D.

3.2. Next chapters
Each of the following chapters explains a different set of nodes that together can be used
to make up the X3D scene graph.

Brutzman-Ch01.qxd 2/16/07 12:28 PM Page 35

36 C H A P T E R 1 Technical Overview

Chapter 2 (Geometry Primitives) shows how to construct simple geometric shapes
to build a basic X3D scene. Chapter 3 (Grouping Nodes) shows how to group different
shapes together and move them to different locations in virtual space.

Reference
Bos, Bert, and W3C Communications Team, XML in 10 points, web page, November

2001. Available at www.w3.org/XML/1999/XML-in-10-points.

Brutzman-Ch01.qxd 2/16/07 12:28 PM Page 36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Symbol
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF0045006c0073006500760069006500720020005000720065007300730020005000440046002000530070006500630073002000560065007200730069006f006e0020004100630072006f00620061007400200036000d0052006f0062002000760061006e002000460075006300680074002c0020005300510053002c00200045006c007300650076006900650072002000420056>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

